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is much the same for all TLS components, we have only 
listed the principal components L~ of the libration tensor, 
and their standard deviations. Also, the maximum devia- 
tions found between any two respective components in 
different systems are listed under the heading A . . . .  Although 
these maximum deviations attain values up to 30 % of the 
largest principal component L~ of a given molecule, only 
once do they exceed two standard deviations. As can be 
seen from Table 1 the trend of the values of Amax(Ll) and 
o'(L3 is much the same. The o-(L3 are computed from stan- 
dard statistical formulae, but they do, of course, not only 
contain statistical errors of the observed components U¢ k, 
but also systematic experimental errors and insufficiencies 
of the rigid-body model. That insufficiencies of the rigid- 
body model do indeed influence the standard deviations 
a(L3 can be seen from the fact that in those cases where a 
negative value of L~ was computed, a(L3 is fairly large. 

To sum up: 
(1) There is a definite influence of the choice of the (Car- 

tesian) coordinate system - or, equally, of the choice of the 
weighting system - upon the values obtained for the com- 
ponents of TLS, but the variation of the results will rarely 
exceed two standard deviations. Thus in most cases this 
impact does not seem to cause much trouble. In this sense 
we can confirm Hirshfeld & Shmueli's (1972) conclusion. 

(2) The variation of the results obtained in different (Car- 
tesian) coordinate systems is more or less proportional to 
the magnitude of the calculated standard deviation, no 
matter what the reason for a possible large value of the 
standard deviation may be. Hence not only the choice of 
the coordinate system - or the choice of the weighting ma- 

trix - but also the standard of the TLS refinement has an 
effect on the scattering of the final values of the parameters 
TLS. 

(3) In order to obtain (and publish) unique results the use 
of a covariance (weighting) matrix, which remains invariant 
under changes of the coordinate system, is recommended. 
Simple covariance matrices in a Cartesian system are ob- 
tained either with r/= 0, which is diagonal, or with 1/= -¼,  
which is not diagonal but can be better defended on physical 
grounds. 

We are indebted to F. L. Hirshfeld and U. Shmueli for 
supplying the information from their paper before it was 
published. 
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(Received 15 November 1972; accepted 5 December 1972) 

An algorithm is given for determining the radius of a sphere inscribed in the cavity between four different 
spheres arbitrarily separated. 

When considering the packing of atoms and molecules in 
a crystal it is often necessary to calculate the sizes of the 
cavities remaining in the structure. This question can be 
paraphrased as: find the radius of the sphere inscribed in 
the cavity between four tangent spheres. 

If the four spheres are also mutually tangent, then the 
problem has an elegant solution in terms of the curvatures 
a, fl, ), and d (the reciprocals of the radii) of the four known 
spheres and the curvature e of the inscribed (or circum- 
scribed) sphere. These are related by ( a + f l + 7 + 6 + e )  z= 
3(0~2+flznt-y2+dz+J). In N dimensions the general rela- 
tionship N(~ct z) = (~c02 has been proved by Coxeter (1952). 

If, however, the four spheres 1, 2, 3 and 4 are not mutu- 
ally tangential but have radii rl, r2, r3, and r4 and their 
centres at distances dlz, di3, etc. apart, no formula has been 
found in the literature and recourse to a computational 
procedure was necessary. 

Five points, the centres of the five spheres, define four 
vectors, 12, 13, 14 and 15. These four vectors involve 10 
distances between the five points which would be sufficient 

to define a simplex (generalized tetrahedron) in four dimen- 
sions. The four-dimensional volume V of this simplex is 
given by a determinantal equation: 

0 d22 dlZs 
d22 0 d23 

- (96)  2V 2= d~3 d2a 0 
d24 d2a da24 
d~5 d~5 dis 

1 1 1 

dlZ4 d~t5 1 
dL d,~ 1 
d24 d]s 1 
0 d~s 1 

d2s 0 1 
1 1 0 

If our figure is not four-dimensional, but is degenerate 
and three-dimensional, as real configurations of atoms of 
course are, then this determinant will be zero. This rela- 
tionship then enables us to find (from a quadratic equa- 
tion) any one of the ten distances dlj in terms of the others. 

This can be used for at least two purposes. The first is: 
given the three distances of a point P from three fixed 
points A, B and C (at given distances from each other) and 
also the corresponding three distances of a point Q from 
the same three points, find the distance PQ. The two solu- 
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tions of the quadratic correspond to having P and Q on 
the same, or on opposite, sides of the reference triangle 
ABC. This application is convenient for triangulation in 
three dimensions using only distances and is independent 
of coordinate axes. 

The second use is for solving the problem propounded 
above. Suppose the radius of the fifth sphere, inscribed be- 
tween spheres 1, 2, 3 and 4, is R, then the determinant relat- 
ing the ten distances becomes: 

R) l] 0 d22 d23 d24 
d22 0 d223 d24 

d24 d2~ d~ 0 
(r~ + R) 2 (r2 + R) 2 (ra + R) 2 (r4 + R) 2 

1 1 1 1 

(r2 + R) 2 1 
(r3 + R) 2 -- 0. 
(r4 -b R) 2 

0 
1 

The problem thus reduces to one of finding the appropriate 
zero of D(R). This is readily computed with a subroutine 
for the evaluation of a determinant by pivotal condensa- 
tion. R is increased by small steps from zero. When D(R) 
changes sign we take one step back and advance by smaller 
steps and so on until R is known to the required accuracy. 
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The negative root corresponds to the circumscribing sphere. 
The basic formula used above for the volume of a sim- 

plex can be proved by reducing the determinant of order 6 
(rank 4) to one of order 4 by subtracting the first row from 
each of the other rows and doing similarly with the first 
column. If the four vectors corresponding to ,412, d13, d14 
and d15 are written a, b, e and d then, since ( a - b )  2 -  a 2 -  b 2 
= - 2  a .  b, the determinant becomes 

a 2 a . b  a . c  a . d  
- - ( - - 2 )  4--  a .  b b 2 b .  c b .  d 

a . c  b . e  c 2 c . d  
a . d  b . d  c . d  d 2 

This is the determinant of the metric matrix and gives the 
square of the four-dimensional volume of the parallelepiped 
(measure polytope) outlined by the vectors a, b, e and d. 
The volume of the simplex is found from that of the paral- 
lelepiped by dividing by 4!. 
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Corrections to the Tables in Chapter 5.1, Reduced Cells, given in the 1969 edition of Volume I of Inter- 
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Corrections are given to Table 5.1.2.2 of International Tables for X-ray Crystallography, Vol. I (1969), 
Birmingham: Kynoch Press) 

Certain errors have been found in International Tables for 
X-ray Crystallography (1969) in addition to those already 
pointed out by Mighell, Santoro & Donnay (1971) and the 
corrections are given below. 

Table 5.1.2.2 on page 532 
Fourth matrix row from top of table: (aa b b :t Replace matrix S' a . a  

a . b  a . c  ~ a 

( a a  b b t 
by: a .  a 

a . b - b . c  ~ a b 

Bottom matrix row of table: 

matrixS ( a . a  b . b  c . c  Replace 
\ X a . e  a . b  ] 
( a . a  b . b  c . c )  

by: - X  a .  c a .  b 
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